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Abstrad. We repan a theoretical investigation on the frequeneydependenl small-signal 
mobility in the vertical conduction in the presence of a DC bias electric field for cylindricdy 
confined superlattices having transverse diameters ranging from tM for an exhemely confined 
(purely one-dimensional) limit to that for an almost unconfined system In all the cases the 
differential mobility exhibits peculiar freqnency dependence at finite DC bias: the real part 
shows a broad hump before finally approaching zero at high frequency, and the imagiw pm 
experiences a marked dip to negative values before going through the conventional maximum. 
Such behaviour of the frequency-dependent differential mobility stems from a decrease of the 
average inverse effective mass of carriers in conjunction with an increase of their average 
longitudinal energy, and is characterized appmximately by a momentum and an energy relaxation 
time. it is found that the effective energy relaxation time increases significantly with increase 
of the transverse diameter of the superlattice. 

1. Introduction 

Negative differential mobility (NDM) in superlattice vertical transport, predicted more than 
twenty years ago by Esaki and Tsu [I], have been demonstrated experimentally L2-41. 
Recent optical and coherent electromagnetic radiation measurements [5, 61 have further 
indicated Bloch oscillations at low temperature in superlattices with dilute carriers. These 
developments have not only stimulated extensive studies on the physics of these Bragg- 
diffraction-related phenomena 17-14] but have also introduced the prospect of developing 
superlattice-based microwave devices [ 15-17]. Although the occurrence of an oscillatory 
current response at Bloch frequency in high-carrier-density systems remains controversial 
[ 181, the use of a superlattice in a Gunn-like microwave device seems promising if miniband 
NDM can persist at sufficiently high frequency. However, the fact that Bloch miniband NDM 
is manifested in the drift velocity versus electric field curve under steady-state DC transport 
carries no assurance that it will be sustained under dynamic conditions. An early Monte 
Carlo study [19] seemed to indicate that NDM might persist almost up to the Bloch frequency 
when carrier-carrier scatterings are negligible. High carrier density and room temperature 
conditions are desirable for practical use of a superlattice, while strong carrier-carrier and 
carrier-phonon scatterings, together with the transverse motion of the carriers, may suppress 
the coherent Bloch oscillations [18] and destroy NDM at high frequency. Recent calculations 
of high-frequency small-signal response in three-dimensional (unconfined) superlattices with 
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strong intercarrier scattering [ZO] indicate that differential mobility can be negative only up 
to a frequency lower than IOOGHz. For a confined system this frequency can be several 
times higher. This, together with the feasibility of reducing the heating level, makes confined 
superlattices advantageous for working on a NDM-related, high-frequency device. 

We report here a theoretical investigation on the frequency dependence of the &er drift 
velocity in miniband conduction responding to a small-signal AC electric field superimposed 
on a DC bias, for cylindrically confined superlattices having transverse diameters ranging 
from that of the extremely confined (purely onedimensional) l i t  to that of the almost 
unconfined superlattice. We employ the balance equation theory for arbitrary energy bands 
[21], which is a non-parabolic extension of the Lei-ling theory [22]. It has been used to 
discuss steady-state and transient transport in superlattice minibands with much success. 
This theory facilitates numerical calculation for an arbitrarily non-parabolic system while 
the role of electron heating, carrier statistics and realistic scattering mechanisms are all 
included. In the pure one-dimensional (1D) limit the balance equations reduce to those 
of Ignatov et al [ll, 121 if the constant-relaxation-time approximation is assumed for the 
frictional acceleration and electron energy-loss rate. Under this approximation one can 
obtain the explicit analytical expression for the complex high-frequency mobility and gain 
physical insight into its peculiar frequency dependence more easily. 

2. Equations for small-signal response 

We consider a model superlattice system in which electrons can move along the z direction 
through the (lowest) miniband formed by the periodic potential wells and barriers of finite 
height. In the transverse (x-y) plane electrons either move freely in both the n and y 
directions (3D superlattice or unconfined superlattice) or are confined to a region by an 
infinitely high potential wall (ID superlattice or 2D confined superlattice). 

The electron energy dispersion can be written as the sum of a transversemotion energy 
E.! and a tight-binding-type miniband energy E&) related to the longitudinal motion: 

with 
%!(k2)=&nI +&) (1) 

(2)  
where d is the superlattice period along the z direction, -x /d < kz < a/d, and A is the 
miniband width. The electron transverse state and its energy are described by the transverse 
quantum number nl. They should be specified separately for 1D and 3D superlattices. 

According to the non-parabolic balance equation theory developed by the author [21], 
when a time-dependent but spatially uniform electric field E(t) is applied along the z 
direction of the superlattice, the transport state is described by the centre-of-mass (CM) 
momentum p d  Npd (N is the total number of carriers) and the relative electron 
temperature c, which are timedependent parameters. The balance equations can be written 
as 

A 
2 

E&) = -(1 - cosk,d) 

eElm: + A i  4- A,  (3) 
dud 
dt 
-=  

Here 
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is the centre-of-mass velocity, or the average drift velocity of the carrier in the z direction, 

is the averaged inverse effective mass of the CM, and 

is the average electron energy per carrier. In these equations 

f (e, T )  = {exp[(c - p ) / ~ 1  + I}-' 
stands for the Fermi distribution function at the electron temperature T,, and p is the 
chemical potential determined by the condition that the total number of electrons equals N :  

N = 2 f ( s , , ( k A  T ) -  (8) 
n u A  

The expressions for the impurity- and phonon-induced frictional accelerations, Ai and Ap, 
and the energy transfer m% from the electron system to the phonon system, W, have been 
given in [7] and [lo] respectively for 3D and ID superlattices, together with the form factors 
due to longitudinal and transverse wavefunctions. 

With the miniband energy dispersion of (l), the average electron energy is the sum of 
an average transverse energy 

and an average longitudinal energy ez 
2 

Er = - z 6 ( k z ) f ( & q ( k z  -Pd).T) =(A/2)[1-Or(Z)~COS(Zd)l. (10) 
nut& 

The drift velocity is given by 

ud = u,,,u(T) sin(zd) (11) 

n: m:(cz) = M * / ( l  - 26, fA). (12) 

and the ensemble-averaged inverse effective mass turns out to be a function of 6z only: 

Here U, = Ad/2, I/M* = .AdZ/2, and 

is a function of Te, independent of zd 5 pdd. 

frequency w are applied along the superlattice axis: 
Consider that a DC bias electric field EO and a small-signal AC electric field 6E of single 

(14) 
After a transient process, the system reaches a steady state in which Zd, T. can be written 
in terms of a DC bias part and a small AC response: Zd = zo + 6z, T = TO + 6T ,  and all 
other quantities in the balance equations can be expanded to linear order in the small AC 
quantities about the bias point 20 and To. For zeroth order we have just the DC steady-state 
equations: 

(13 

E(f) = Eo + 6E.  

0 = edEocro cos(z0) + 2Ao/(Ad) 
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0 = edEoao sin(z0) - 2Wo/A (16) 
where we write a0 = a(T0). A0 = A(z0. TO) and WO = W(zo, TO). These two equations 
determine zo, TO and thus the DC drift velocity at the the bias point: YO = U,&O sin(z0). The 
equations for linear-order AC quantities are as follows: 

d d 
WO C O S ( Z O ) ~ ~ Z )  +ab s i n ( z o ) z ( C  

Here we have used the symbols e; = da(%)/dT and = dq(zo. To)/dT,. This set of 
equations linear in small AC quFtities is conveniently solved for a single-frequency driving 
field by using a complex form: 6E = E I ~ - ' ~ ' .  For the A c  steady state, 6z and 6T oscillate 
at the same single frequency: 6z = zle-iwr and 6T = Tie+", leading to an oscillating AC 
drift velocity given by Su = ule-'wr, superposed on the DC drift velocity, with 

u1 = U, [a0 cos(zo)zl+ CY; sin(zo)Tl] . (19) 

P L ~  = VI /El. (20) 

The complex frequency-dependent mobility is defined as 

3. Pure ID case; relaxation time approximation 

Considering the case in which the carriers are confined to very small dimensions in both 
directions in the lateral plane (ID superlattice) such that they are frozen in the lowest lateral 
subband, the balance equations (3) and (4) become 

dud/dt = eE/m;(c,) + A  (21) 
deJdt = eEUd - W. (22) 

Equations (21) and (22), in the constant-relaxation-time form, have been used by 
Ignatov et a1 [ l l ,  121 to discuss steady-state, transient and high-frequency transport in 
the superlattice miniband. The constant-relaxation-time approximation assumes that the 
frictional acceleration A = Ai + A ,  is proportional to the drift velocity: 

A = -ud/t (23) 
(r  is called the momentum relaxation time) and the energy transfer rate W is proponional 
to the energy deviation from the equilibrium value IT at the lattice temperature T in the 
absence of the electric field 

w = (cz - ET) /% (24 
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(r, is called the energy relaxation time). Here the equilibrium energy E T ,  given by 

and~is different from what was used by Ignatov et al [II, 121: 

If the electron system is in a non-degenerate limit, -p/T >> 1, the present cT (equation (25)) 
reduces to Ignatov's ET (equation (26)). Unfortunately, in such a purely one-dimensional 
system the non-degenerate limit does not generally exist [lo]  no matter how high the 
temperature is, except for in the case of very small electron density Nld - 0 such that 
In(2/Nld - 1) >> 1. Therefore the expression (26) can only describe a very dilute electron 
system at high temperatures. In general, it should be replaced by (25). 

When a DC bias electric field Eo and a Smdl-AC-Signd electric field of single frequency, 
SE = Ele""', are applied, one can write ud = vo + Su and eZ = EO +SE, and balance 
equations (21) and (22) yield a bias drift velocity vo given by 

b 
1 +b2 

U0 = 2v,- 

where b = Eo/E,, with 

E, = I/[ed(sre)'/2] 

and 

These expressions were given by Ignatov et al 111, 121, except that there a(T) is replaced 
by I1 (A/ZT)/Io(A/ZT).  The first order equations for small-signal response read 

d 6s 
-Ss6 + - = evoSE f e E o S v .  
dt re 

(30) 

(31) 

The second term on the right-hand side of (30) comes from the fact that the increase in the 
system internal energy, SE, due to a small increment of the signal field results in a decrease in 
the inverse effective mass. This effect has a profound influence on the differential mobility. 
In fact, the above equations yield a differential mobility at frequency w of the form 

ez ~ , 1 - b2(1 - iwre)-' 
/I" = -  EO) 1 - iwr + b2(1 ~- iwr&l ' 

The zero-kquency differential mobility is given by 
er 1 - b 2  po = -~ 

m: (EO)  1 + b2 ' (33) 

The terms containing b2 are related to the second term on the right-hand side of (30). We 
can see that when a small AC field SE is applied together with a finite DC bias EO # 0, 
there are two inffuential effects. First, at finite bias field Eo the inverse effective mass 
I/mf(&o) is smaller than at zero bias, and it decreases monotonically with increasing EO 
because the average longitudinal energy EO increases. However, since I/m: (cO), determined 
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by the steady-state DC balance equations, is always positive, this effect, though tending to 
decrease the differential mobility, cannot bring it into the negative regime. The occurrence 
of negative differential mobility devolves upon the fact that a positive SE induces a positive 
S E ,  as required by the energy balance equation, and this S E  in turn results in an additional 
negative change of the inverse effective mass, which contributes a negative term (the term 
containing bZ in the numerator of (30)) to the differential mobility at a non-zero DC bias. 
It is just this contribution that gives rise to negative differential mobility at low frequency 
in superlattice miniband transport. This effect, which stems from the change of average 
longitudinal energy with a small AC electric field signal, however, is frequency dependent. 
At higher frequency, when SE cannot synchronously follow SE as in the zero-frequency 
limit, this effect weakens and consequently Repm may exhibit an increase with increasing 
frequency at finite DC bias. Figure 1 shows the real part of pa as a function of frequency at 
bias DC field b E0/Ec = 0, 0.1,0.3, 0.5, 1, 1.7, 3, 5, 10 and 20, for the case of re = lot. 
It is just this effect that gives rise to the humps in Re pm as a function of wr before it 
finally vanishes at large wr. Without this effect (i.e. b = 0 and thus EO = E T )  will take 
Drude form: 

in which 

is the zero-frequency mobility at zero DC bias. 
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Figure 1. The real part of the frequency-dependent mobiliry po, as predicted by (32) in the 
m e  of r. = 102, is shown as a function of 02 for different bias DC fields. 
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4. 3D systems; realistic scatterings 

Apparently, the constant-relaxation-time approximation for the frictional acceleration A 
and the energy-loss rate W is difficult to justify for a real system. To go beyond this 
approximation and to take account of the realistic impurity and phonon scatterings, we 
return to (15) and (16), and (17) and (18). We consider a cylindrically confined GaAs- 
based quantum well superlattice, in which electrons are assumed to be confined to a small 
cylindrical region of  diameter d, by an infinitely high potential wall. The transverse quantum 
number rill = (1, n)  ( I  = 1,2,. . . and n = 0, f l ,  f 2 ,  . . .). and the transverse energy of the 
electron state is given by 

= 2(x;)2/(md?) (36) 
where m is the electron band effective mass of the background bulk material, and x; 
represents the lth zero of the nth-order Bessel function, i.e. J&;) = 0. 

We include electron scatterings from randomly distributed impurities, longitudinal and 
transverse acoustic phonons (through deformation potential and piezoelectric couplings with 
electrons) and polar optic phonons (through Frohlich coupling with electrons). The detailed 
description of these couplings and the form factors appearing in the expressions for A and 
W has been given elsewhere [IO]. All the parameters used in the calculations are typical 
values of GaAs. 

For extremely confined systems, e.g. for d, < lOnm, it is a good approximation 
to consider the lowest snbband and we have a purely ID system. The term containing 
the transverse energy €;lo in (18) disappears and (15H18) are readily solved to obtain 
the complex frequency-dependent mobility, limited by realistic scatterings. The numerical 
results for both Rep, and h p ,  are qualitatively quite similar to those obtained from 
purely ID equations with the relaxation time approximation. 

With increasing cylindrical diameter of the ID superlattice, the influence of the carrier 
transverse movement begins to emerge, and the occupation of many subbands has to be taken 
into account. To see how the cylindrical diameter affects the frequency-dependent mobility, 
we have calculated the r& part Repu and the imaginq  part Imp., of the frequency- 
dependent differential mobility pa from equations (15) to (18) at lattice temperature 
T = 300 K, for several superlattices having period d = 10 nm, miniband width A = 900 K, 
and low-temperature linear mobility p(0)  = l.0m2 V-' s-', but with cylindrical diameter 
d, varying from 20nm to 40nm, and carrier line density Nld equal to nd(ndz/4),  which 
is chosen separately for each d, such that the equivalent 3D densities n are kept the same, 
n = 6 . 7 5 ~  lox m3, for all systems. As many as 21 transverse subbands are considered in the 
calculation. To save space we only plot the numerical results for the system of d, = 40nm 
in figure 2. The linear mobility of this system is 0.545 m2 V-' s-' a t T = 300K. If one 
still tries to characterize the frequency dependence of p, qualitatively in terms of the above 
two-relaxation-time model as given by (32), the main effect of increasing the transverse 
diameter from d, = 10 nm to d, = 40 nm appears to be the increase in the effective energy 
relaxation time zs: approximately 0 . 3 5 ~ s  for the d, = lOnm system and 2.3ps for the 
d, = 40nm system. The effective momentum relaxation time z also changes from about 
0 .08~s  for the d, = 10 nm system to about 0.15 ps for the d, = 40nm system. 

5. Discussion 

We have presented a theoretical investigation on the high-frequency small-signal mobility 
in the presence of a Dc bias for laterally confined superlattices. To concentrate on the pure 
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Figure 2. The real part, Rep,, and the imaginary part, Jm!&. of the frequency-dependent 
mobility are plotted against the signal frequency v = o/Zn at several different Dc bias fields Eo 
and at lattice t e m p e m  T = 300K. for a GaAs-based cylindrically confined superlattice With 
uaverse diameter d, = 40nm period d = lOnm, miniband width A = 9WK, elecmn density 
Nld = 8.48 and low-temperature linear DC mobility p(0) = l.Omz V-' s-'. The numerical 
calculations were carried using (ISHlS), considering the 21 lowest transverse subbands. 

superlattice effect we have used an idealized model without intersubband (Zener) tunnelling, 
intervalley (r-x) scattering, higher miniband occupation, and many other processes that 
may occur in actual systems. Such an idealized model does represent the main physics of an 
experimentally carefully devised system under appropriate conditions. The present balance 
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equation analysis provided a physical insight into the NDM for high frequency and allowed 
us to calculate the frequency-dependent current response of the system, without considering 
the spatial inhomogeneity. Exploring the formation and the motion of electron wave packets 
or domains from a space- and time-dependent set of equations is, of course, highly desirable 
and will be the subject of a future study. Nevertheless, the present homogeneous treatment 
sets an upper limit for the frequency attainable in a superlattice-based, NDM device and 
constitutes a first step toward an inhomogeneous analysis. 
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